Lecturers

Slides

Introduction to neural networks – Lars Kai Hansen [wpdm_file id=6]
Markov Random Fields and Restricted Boltzmann Machines – Christian Igel [wpdm_file id=7]
Unsupervised feature learning – Hugo Larochelle [wpdm_file id=5]
Modern deep architectures – Aaron Courville [wpdm_file id=10]
Dan Claudiu Cireșan – Convolutional neural networks [wpdm_file id=11]
Deep learning in breast cancer screening – Michiel Kallenberg [wpdm_file id=9l]
Deep learning lessons from image, text and bioinformatics applications – Ole Winther [wpdm_file id=8l]

Practical sessions

Restricted Boltzmann Machines in Shark [UPDATE 15/08] Installation instructions (pdf) [UPDATE 15/08] Code Shark RBM (zip)
Autoencoders for unsupervised pre-training Installation instructions (pdf) Linux/Mac: [wpdm_file id=2] Windows: [wpdm_file id=4]
Convolutional neural networks for digit recognition Linux/Mac: [wpdm_file id=12] Windows: [wpdm_file id=13]

Suggested reading

Introduction to neural networks
Markov Random Fields and Restricted Boltzmann Machines
Unsupervised feature learning
Modern deep architectures
Convolutional neural networks

Further reading