DTU Compute

Department of Applied Mathematics and Computer Science

JTU

oo
>><
>

Measuring particle statistics
using a CNN-based segmentation

Anders B. L. Larsen
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Dataset

The dataset consists of a series of SEM images taken over
time showing particles of a chemical compound.
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SEM image example.

Annotation scheme

We wish to determine particle boundaries in order to sepa-
rate the particles. Therefore, we manually annotate a small
region of an image into background (blue), background
borders (red), and inter-particle borders (green).

NB: We do not handle overlapping particles in a clever
way. The current manual scheme for measuring particle
sizes has similar (and other) limitations.

Annotation example.
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Motivation We wish to analyze the behavior of chemical compounds over
time in order to e.g. estimate shelf life of pharmaceutical drugs. Many chemi-
cal compounds have the ability to crystallize leading to changes in the physical
properties of a drug. One way to characterize the crystallization process is by
monitoring the size of the individual particles/crystals over time using scanning
electron microscopy (SEM) images. This process requires manual inspection and is
cumbersome and labor intensive. We show that this task can be automated using
a convolutional neural network (CNN) to segment the particles.

Method

An image is processed by extracting overlapping patches
and assigning class probabilities to each patch. The pixel-
wise class probabilities are then used as segmentation.
Preprocessing: Local contrast normalization to compen-
sate for exposure and contrast perturbations.

Before (left) and after (right) local contrast normalization.

Convolutional neural network

We employ a feed-forward convolutional neural network
with the following implementation details.

Mini-batch SGD with momentum For more stable gradi-
ent updates and faster convergence.

Dropout We use dropout regularization in the fully con-
nected layer to prevent overfitting.

Rectified linear units For faster convergence.

Multi-target, multinomial logistic regression We assign
class labels to a 3 x 3 neighborhood around each
patch center. The label overlap yields a smoother
segmentation.

FFT-based convolutions Allow for a GPU architecture ag-
nostic implementation.
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The convolutional neural network architecture.

Measuring particle sizes

With the segmentation image, we can extract particles
using a watershed transformation. The area of each particle
Is then measured by counting pixels (the physical size of
a pixel is known).

Results

We are able to measure particle size distributions similar
to what has been measured manually.

Left: Input image. Middle: CNN segmentation. Right: Extracted particles.

Learned CNN filter banks for the 3 convolutional layers.
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Particle area distributions over 1 to 250 days. Manual (left) vs. automatic
(right) measurements.




