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Outline N-perspective n-point problem (nPnP)

We approach the problem of estimating the 6DOF pose of a rigid object by means of
a stereo camera setup. No prior knowledge of the object geometry is used —
instead the object surface is reconstructed simultaneously with pose estimation.
This is not unlike the SLAM (simultanous localisation and mapping) methodology
used commonly in e.g. robot navigation.

In the classical perspective n-point problem, the pose of a camera is estimated
based on a series of 3D-2D point correspondences (pz- — fz) The minimal case is
three non-coaxial pairs.

Because we observe 3D points in two distinct, calibrated cameras, we solve the
generalised n-perspective n-point problem using a linear algorithm [3] with sampling

consensus, followed by a few iterations of a non-linear refinement of the estimate.
The motivation for this work is the problem of head motion during medical scanning. i

MRI and PET often require very long acquisition times during which patient motion
s likely to occur. In MRI, these effects include Nyquist violations which are
impossible to correct for post-aquistion.

The illustration shows the n-perspective n-
point problem as defined in OpenGV
library[4]. vp denotes a “viewpoint”, in this
case the rigidly coupled stereo-setup.
f;are “bearing angles” corresponding the
observed 2D projections of points p;.

Hence a real-time procedure for motion estimation is sought. The presented
approach is similar to the work of Kyme et al. [1], but solves a n-perspective n-pose
problem and makes use of binary features for real-time performance.

Solving for rotation /2 and t in this case
provides us with the current object pose.

FAST and BRIEF features

A high number of SIFT-like features locations are detected, described and matched,

which comprises the computationally heaviest part of our algorithm. Consequently, Mapping
we make use of a modern detector and binary features, which are considerably
faster to compute and match. Following the SLAM methodology, we match

current features to a model of the object
surface, while extending the model with
unmatched features. This ensures a drift-
free result, while providing ample opportunity
to match.

Typical numbers for the “face” scene, shown
throughout the poster, are 900 features
detected in each image, with 120 stereo
matches and 100 inliers after sampling

Features locations are detected
using a multi-scale adaptation of
FAST (Features from Accelerated
Segment Test) [2] over 4 scale
levels.

The illustration shows how
candidate features points are
checked by determining the

longest segment of higher consensus.
brightness pixels in a ring-shaped neighborhood.
BRIEF is a fast binary feature descriptor with high robustness to geometric and Kalman Filtering

photogrammetric transformations. The feature vector contains evaluations of a
brightness comparison between the feature location and surrounding points in a

predefined pattern. This comparison is done in a rotation/scale normalised space. Pose estimates are corrupted by noise. To mitigate this problem we filter the pose

estimates as parameterised by quaternion and translation vector with a 6DOF
Hamming distance = 3 —— scented Kalman filter similar to [5]. Qualitative results are shown below for the “face’
scene used throughout this poster.
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Feature matching comprises of a high number of
distance calculations, which in the case of binary AA1Tel1TiToTol1ToTol
features can be done very efficiently by means of the 5 3 B

Hamming distance as illustrated to the right. gl1lolol1lolololol1l1

Sample feature matches from two time instances are shown below.
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Conclusion

Using binary feature descriptors and Kalman filtering, we have implemented a real-
. ‘ time system for 6DOF pose tracking. Qualitative results are promising, however,
organic scenes are challenging to this method, and result in sporadic loss of
tracking. Future work will address these challenges.
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