

SMC Methods for Graphical Models

Christian A. Naesseth

Joint work with F. Lindsten, A. M. Johansen, T. B. Schön, B. Kirkpatrick, J. Aston, A. Bouchard-Côté

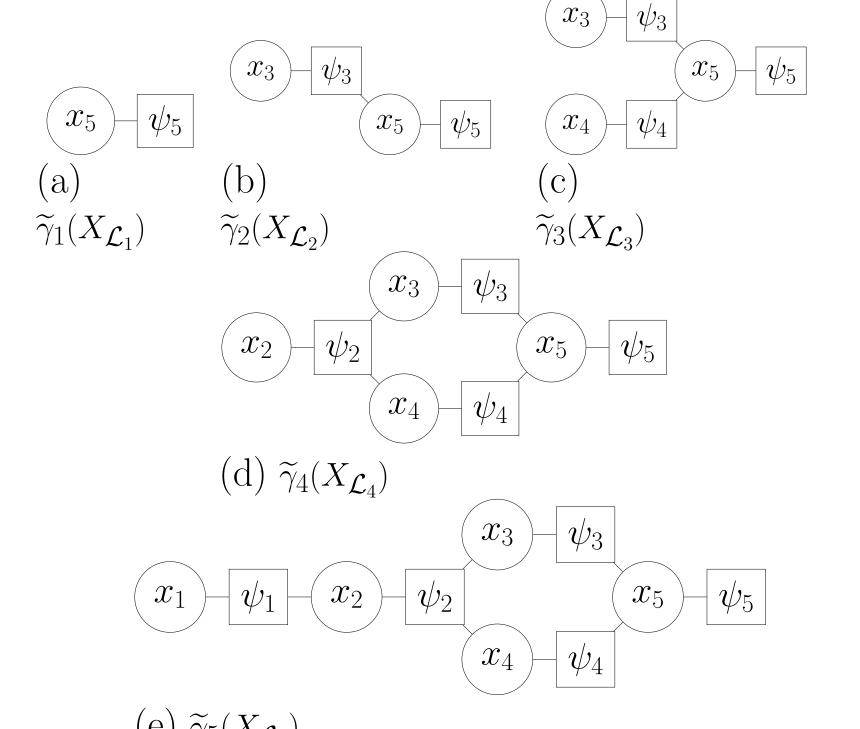
UPPSALA UNIVERSITET

Summary

- Probabilistic Graphical Models (PGM) used in computer vision, localisation, error-correcting coding, speech recognition, computational biology, machine learning, etc.
- Cyclic and/or continuous PGMs in general makes inference non-trivial and approximate methods are needed.
- Proposed Sequential Monte Carlo (SMC)-based methods:

Sequential Decomposition

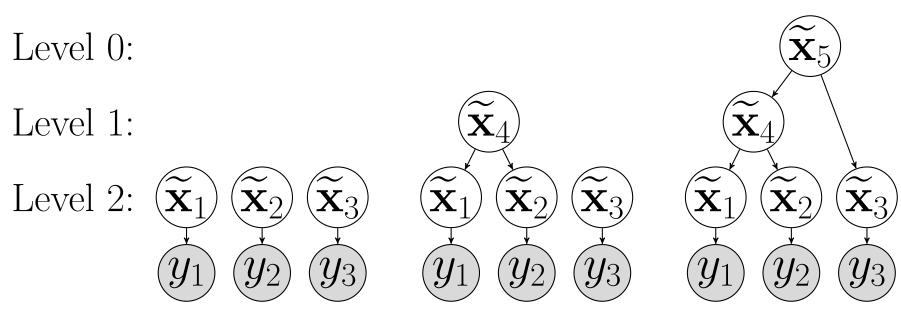
Sequential decomposition of a PGM is all about using structure encoded by factors in the graph to construct a valid sequence of target distributions for an SMC sampler.



Divide-and-Conquer SMC

New SMC method that utilises a divide-andconquer strategy to approximate a distribution of interest. Multiple independent particle populations are resampled, merged and propagated as the method progresses on an auxiliary treestructured decomposition of the PGM.

Level 0:



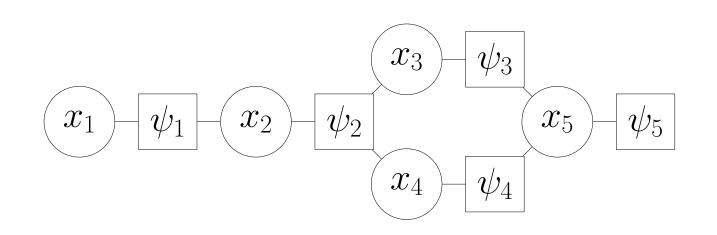
- "Standard" SMC Exploits a sequential decomposition to construct the joint probability of the PGM using "standard" SMC methods. -D&C SMC New SMC algorithm based on a divide-and-conquer strategy.

Graphical Models

We consider models on the form,

 $p(X_{\mathcal{V}}) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_c(X_C),$

where the graph $G = (\mathcal{V}, \mathcal{E})$ has vertex set $\mathcal{V} = \{x_1, \ldots, x_{|\mathcal{V}|}\}, \text{ edge set } \mathcal{E}, \text{ cliques } C \text{ and }$ $Z = \int \prod_{C \in \mathcal{C}} \psi_c(X_C) dX_{\mathcal{V}}$ is the *partition func*tion (normalisation constant).



(e) $\widetilde{\gamma}_5(X_{\mathcal{L}_5})$

Figure 4: An example of one possible sequential decomposition of the factor graph in Figure 1.

Sequential Monte Carlo

A standard approach to approximate a sequence of distributions. Denote the newly added random variables ξ_k^i and all the added random variables at iteration $k, X_{\mathcal{L}_k} \subset \{x_1, \ldots, x_{\mathcal{V}}\}.$ Algorithm 1 SMC for PGM Perform each step for i = 1, ..., N. Sample $X_{\mathcal{L}_1}^i \sim r_1(\cdot)$. Set $w_1^i = W_1(X_{\mathcal{L}_1}^i)$. $\widehat{Z}_1^N := \left(\frac{1}{N}\sum_{i=1}^N w_k^i\right).$ for k = 2 to K do Sample a_k^i according to resampling weights: $\mathbb{P}(a_k^i = j) = \frac{\nu_{k-1}^j w_{k-1}^j}{\sum_l \nu_{k-1}^l w_{k-1}^l}, \qquad j \in \{1, \dots, N\}$ Sample $\xi_k^i \sim r_k(\cdot | X_{\mathcal{L}_{k-1}}^{a_k^i})$ and set $X_{\mathcal{L}_k}^i =$ $\begin{aligned} X_{\mathcal{L}_{k-1}}^{a_k^i} \cup \xi_k^i. & \text{Set } w_k^i = W_k(X_{\mathcal{L}_k}^i). \\ \widehat{Z}_k^N &= \widehat{Z}_{k-1}^N \cdot \frac{1}{N} \sum_{i=1}^N \nu_k^i w_k^i. \end{aligned}$ end for

Figure 5: Decomposition of a hierarchical Bayesian model.

Algorithm 2 dc_smc(t) 1. For $c \in \mathcal{C}(t)$: (a) $((\mathbf{x}_c^i, \mathbf{w}_c^i)_{i=1}^N, \widehat{Z}_c^N) \leftarrow \mathsf{dc}_{-}\mathsf{smc}(c).$ (b) Resample $(\mathbf{x}_{c}^{i}, \mathbf{w}_{c}^{i})_{i=1}^{N}$ to obtain the equally weighted particle system $(\check{\mathbf{x}}_{c}^{i}, 1)_{i=1}^{N}$. 2. For particle $i = 1, \ldots, N$: (a) Simulate $\widetilde{\mathbf{x}}_{t}^{i} \sim q_{t}(\cdot \mid \check{\mathbf{x}}_{c_{1}}^{i}, \ldots, \check{\mathbf{x}}_{c_{C}}^{i})$ from some proposal kernel on X_t , and where $(c_1, c_2, \ldots, c_C) = \mathcal{C}(t).$ (b) Set $\mathbf{x}_t^i = (\check{\mathbf{x}}_{c_1}^i, \dots, \check{\mathbf{x}}_{c_C}^i, \widetilde{\mathbf{x}}_t^i).$ (c) Compute $\mathbf{w}_t^i = \frac{\gamma_t(\mathbf{x}_t^i)}{\prod_{c \in \mathcal{C}(t)} \gamma_c(\check{\mathbf{x}}_c^i)} \frac{1}{q_t(\widetilde{\mathbf{x}}_t^i \mid \check{\mathbf{x}}_{c_1}^i, \dots, \check{\mathbf{x}}_{c_C}^i)}$. 3. Compute $\widehat{Z}_t^N = \left\{ \frac{1}{N} \sum_{i=1}^N \mathbf{w}_t^i \right\} \prod_{c \in \mathcal{C}(t)} \widehat{Z}_c^N.$ 4. Return $((\mathbf{x}_t^i, \mathbf{w}_t^i)_{i=1}^N, \widehat{Z}_t^N)$.

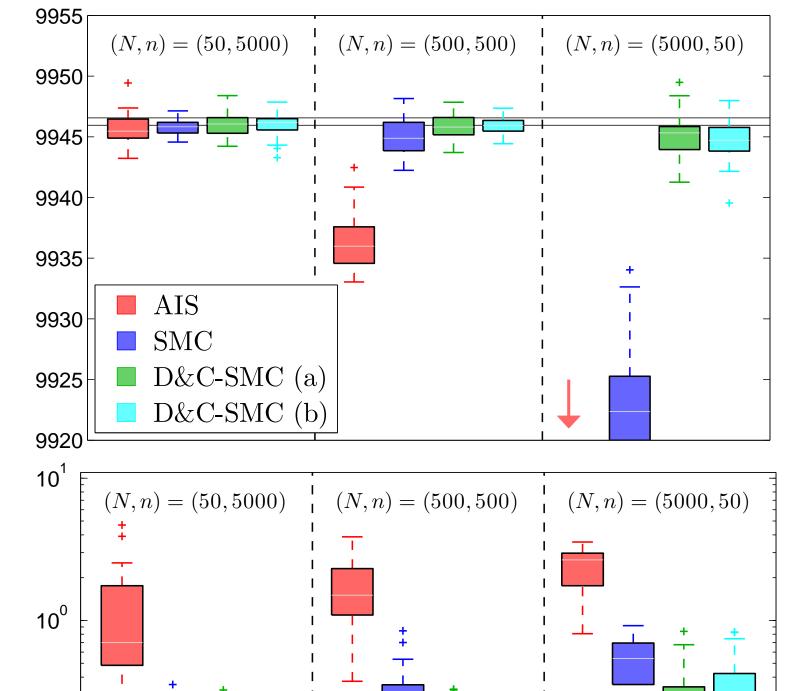
Figure 1: Example factor graph describing dependencies between random variables x in a PDF.

The construction applies to a variety of interesting problems! Factor graphs can in fact be used to represent both Bayesian networks (e.g. state-space models, hierarchical models) and Markov networks (e.g. Restricted Boltzmann Machines, Ising models, ...)

Example: 64×64 Classical XY model ($\beta = 1.0$)

$\circ \circ \circ \circ$	0-0 0-0	$\varphi - \varphi \varphi - \varphi$		$\phi \phi \phi \phi$
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	$\bigcirc - \bigcirc \bigcirc - \bigcirc$	4 - 4	5-0-0-0	$\phi \phi \phi \phi$
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	$\bigcirc - \bigcirc \bigcirc - \bigcirc$	$\phi - \phi \phi - \phi$	$\phi - \phi - \phi - \phi$	$\phi \phi \phi \phi$
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	$\bigcirc - \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	4 - 4	5-0-0-0	0000

Figure 6: The disconnected components correspond to the groups of variables that are targeted by the different populations of the D&C SMC algorithm. At the final iteration, corresponding to the rightmost figure, we recover the original, connected model.



Example: $16 \times 16 \ (\beta = 1.1) \text{ and } 64 \times 64 \text{ Classical XY model } (\beta = \{0.5, 1.1\})$

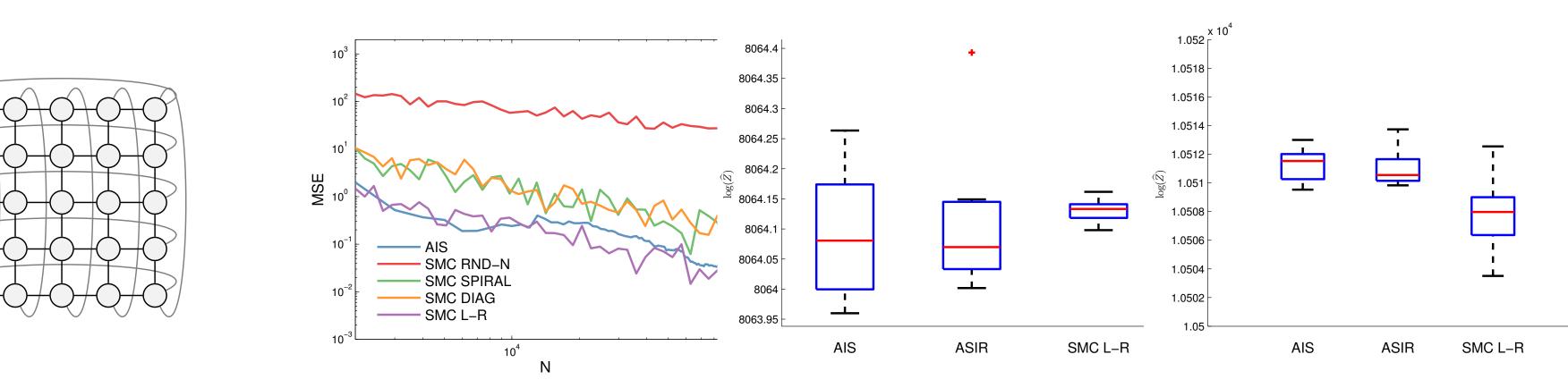


Figure 2: Left: XY model Middle Left: MSE in the estimates of log Z for AIS and four different orderings in SMC for PGM. Middle

Right, *Right*: The logarithm of the estimated partition function for the 64×64 XY model with inverse temperature 0.5 (middle right) and 1.1 (right).

Example: Evaluation of LDA topic models (likelihood estimation)

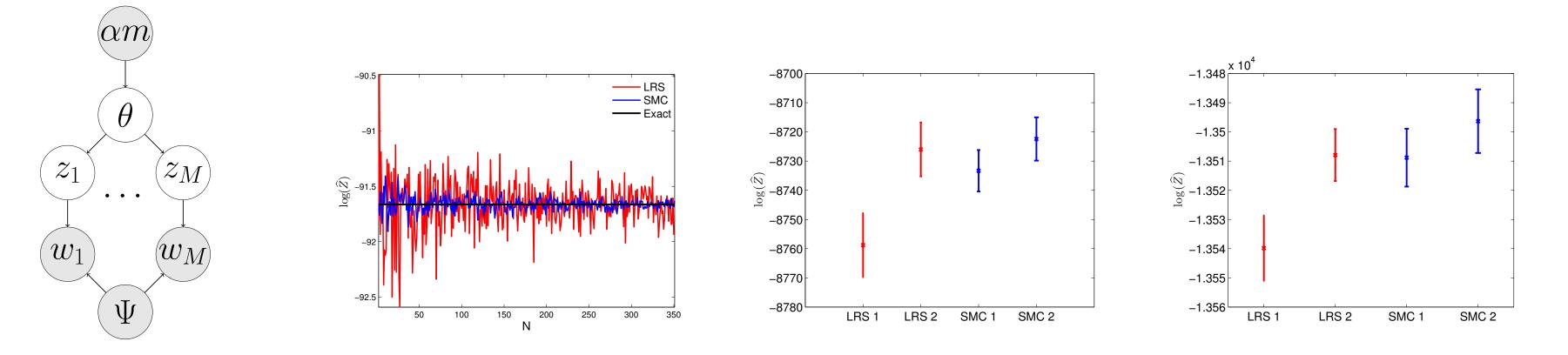


Figure 7: Box-plots over 50 runs of each sampler, using N particles and a total of n annealing steps. D&C SMC (b) uses fewer particles, $\overline{N} = 50, 309, \text{ and } 475 \text{ in the three columns (left to right), respectively,}$ to match its computational cost to the other methods. *Top:* Estimates of $\log(Z)$. The horizontal lines correspond to min and max of 10 runs of AIS with $(N, n) = (10, 100\,000)$. Bottom: MSE (log-scale) for the estimates of $\mathbb{E}[x_k]$ (averaged over the grid).

Figure 3: Left: LDA topic model. Middle - Right: Estimates of the log-likelihood of heldout documents for various datasets using SMC for PGM and Left-Right Sequential sampler.

[1] C. A. Naesseth, F. Lindsten and T. B. Schön, Sequential Monte Carlo for Graphical Models, arXiv.org, arXiv:1402.0330.

[2] F. Lindsten, A. M. Johansen, C. A. Naesseth, B. Kirkpatrick, T. B. Schön, J. Aston, A. Bouchard-Côté. *Divide-and-Conquer with Sequential Monte Carlo*, arXiv.org, arXiv:1406.4993.

http://www.control.isy.liu.se/