SMC Methods for Graphical Models

Joint work with F. Lindsten, A. M. Johansen, T. B. Schon, B. Kirkpatrick, J. Aston, A. Bouchard-Coté

Summary
e Probabilistic Graphical Models (PGM) — used

1n computer vision, localisation, error-correcting
coding, speech recognition, computational biol-
ogy, machine learning, etc.

e Cyclic and/or continuous PGMs in general
makes inference non-trivial and approximate
methods are needed.

e Proposed Sequential

(SMC)-based methods:
— “Standard” SMC E

Eixploits a sequential de-
composition to construct the joint probability

of the PGM using “standard” SMC methods.

— D& C SMC New SMC algorithm based on a
divide-and-conquer strategy.

Monte Carlo

Graphical Models

We consider models on the form,

where the graph G = (V,&) has vertex set
= {Z1,..., 2}, edge set &, cliques C' and
7Z = | 1loee ¥e(Xe)dXy is the partition func-

tion (normalisation constant).
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Figure 1: Example factor graph describing dependencies
between random variables x in a PDF.

The construction applies to a variety of in-
teresting problems! Factor graphs can in fact
be used to represent both Bayesian networks
(e.g. state-space models, hierarchical models) and
Markov networks (e.g. Restricted Boltzmann Ma-
chines, Ising models, ...)
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Sequential Decomposition

Sequential decomposition of a PGM is all about
using structure encoded by factors in the graph to
construct a valid sequence of target distributions

for an SMC sampler.
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Figure 4: An example of one possible sequential decom-
position of the factor graph in Figure 1.

(e) ¥5(Xz,)

Sequential Monte Carlo

A standard approach to approximate a sequence
of distributions. Denote the newly added random
variables &' and all the added random variables
at iteration k, Xp, C {x1,...,xp}.
Algorithm 1 SMC for PGM

Perform each step for1=1,..., N.

Sample X ~ ri(-). Set wj = Wi(X}).

1 NV
= (W Dot wk)
for k=2 to K do
Sample a’, according to resampling weights:

P(a}, = j) = 2t jefl, ..., N}

T
Zsz 1 Wg—1"

Sample &, ~ Tk(-\XZ’Z_l) and set X =

Xﬁ; U &} Set w,i:Wk( L),
ZN Z 1 NZZ 1kak
end for
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Figure 2. Left: XY model Middle Left: MSE in the estimates of log Z for AIS and four different orderings in SMC for PGM. Middle
Right, Right: The logarithm of the estimated partition function for the 64 x 64 XY model with inverse temperature 0.5 (middle right) and

1.1 (right).
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Evaluation of LDA topic models (likelihood estimation)
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Figure 3: Left: LDA topic model. Middle - Right: Estimates of the log-likelihood of heldout documents for various datasets using SMC

for PGM and Left-Right Sequential sampler.
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Divide-and-Conquer SMC

New SMC method that utilises a divide-and-
conquer strategy to approximate a distribution
of interest. Multiple independent particle pop-
ulations are resampled, merged and propagated
as the method progresses on an auxiliary tree-

structured decomposition of the PGM.
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Figure 5: Decomposition of a hierarchical Bayesian model.

Algorithm 2 dc smc(?)
1. For ¢ € C(t):

() (¢, Wi, ZY) += de sme(c).
(b) Resample (x%, w')Y, to obtain the equally
weighted particle system (X%, 1),

2. For particle 1 =1, , N
(a) Simulate X! ~ g+ | 5(’% .., %) from
some proposal kernel on X;, and where
(Cl,CQ.,...,C'C) :C(t) |
(b)Set x} = (%, ...,%[, ii)
(
. 1
(¢c) Compute w; = i(xt) = —
HcEC(t) /YC<XC) Qt( 017 Lo 7XCC)

3. Compute ZN = {% S W%} [ e ZN.
4. Return ((xi, w))N,, ZM),

Example: 64 x 64 Classical XY model (5 = 1.0)
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Figure 0: The disconnected components correspond to the groups
of variables that are targeted by the different populations of the D&C
SMC algorithm. At the final iteration, corresponding to the rightmost
ficure, we recover the original, connected model.
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Figure 7 Box-plots over 50 runs of each sampler, using NV particles
and a total of n annealing steps. D&C SMC (b) uses fewer particles,
N = 50, 309, and 475 in the three columns (left to right), respectively,
to match its computational cost to the other methods. Top: Estimates
of log(Z). The horizontal lines correspond to min and max of 10 runs

of AIS with (N,n) = (10,100000). Bottom: MSE (log-scale) for the
estimates of E|xy] (averaged over the grid).
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