Sparse Modeling of Chemical Compounds

B. Hedayati, N. Dimopoulos, T. Vallianatou, A. Tsantili-Kakoulidou

Introduction

- QSAR model predicts the activity/properties of the compounds based on their description.
- Our method that will result in Neural Networks-based models in QSAR of PPAR-α ligands.
- We introduce a new judicial selection of ensembles of trained Neural Networks to contribute to the final model.

Method

- Too few exemplars = Difficulty in generalizing
 70 Exemplars << 1000-3000 Exemplars
- Our method is based on Regularization.
 It requires smoothness.
- Randomly setting aside compounds ➞ several sub data sets ➞ Several models (Figure 1)

Results and Conclusion

- Two sets of chemical compounds [1] [2] were examined.
 70 compound in data set and 23 compounds in set for alpha and for gamma.
- The results are resent in figure 3.
- Considering the nature of data, the results are accurate.

References

ACKNOWLEDGMENT

Computational support was provided by the High Performance Computing Facility at the University of Victoria. This work was supported in part by The National Science and Engineering Research Council of Canada (NSERC) and by the Lansdowne Chair in Computer Engineering at the University of Victoria.