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DATA MINING BAYESIAN NETWORK

Data mining is the computational process of analyz- Central question: How large are the uncertainties introduced by neglecting higher orders in perturbative QCD?
ing a large set of data. Find an estimator for the remainder A, = 3", 11 0 cp (— see introduction to QCD in the left column).

Examples:

e Bayesian networks [1, 2]: probabilistic graphi- greaue”
cal model, set of random variables (nodes: ob-
servable quantities, hidden/ unknown parameters)
with conditional dependences, priors on random
variables.

Neural networks: inspired by human learning, sys-
tem of interconnected neurons (nodes) which com-
pute values from input, parameters tuned by learn-
ing algorithm.

Fuzzy logic: Truth values ranging from 0 to 1, con-
cept of fuzzy set membership (how much is a vari-
able in a set vs. how probable is it that it is in the set
in probability theory).

Bayesian Inference

Decision tree learning: input variables (interior Random variables for three observables e Bayesian inference to determine

?i;)lc;ej;, :ﬁzggzt\;asréfbles (leaves), train tree by split- N posterior distributions f (ci.41/co .- - ).
O = Z (78) & for &, =c, A", ¢ =a.e,o For small o N.().l . .AO.Q (as ;IJ:Fert. QCD),
Here, we present an example of a Bayesian network. n=0 we can approximate Ay ~ Qg Crp1.

e Observable quantities:

Known coefficients ag, a1, €g, €1, 01, 02. e Frequentist methods to determine
QUANTUM CHROMODYNAMICS e Hidden parameters: a, ¢, o. optimal expansion parameter o,/
Quantum Chromodynamics (QCD) is the theory of e Unknown parameters: \, as, as, €2, 03, 04. (not uniquely defined in QCD).

strong interactions (between quarks and gluons) in the

Standard Model of particle physics.
BAYESIAN INFERENCE [3] FREQUENTIST ANALYSIS [4]

Use set of 20 observables to find optimal expansion pa-
rameter o /.

o Confinement: The force between quarks grows
larger with distance = they are only observed in
bound states (protons, neutrons, ...).

e Goal: Obtain posterior conditional density distri-
bution for the first unknown coetficient cx4; given

the coefficients ¢, ..., cp . .
Asymptotic Freedom: at high energies (short dis- 1. Calculate un.certamty interval .for one observable at
tances), the strong coupling becomes small. Flenilco o) = f(co, - - -, Crs Chg1) order k for given degree of belief (DoB).
L f(eoy. . ) , . ,
Perturbative expansions: For small coupling, ob- 2. Test whether known higher order is within DoB in-
servables O can be calculated as an expansion in the o The density functions f(co,...,c;) and terval or not.
strong coupling f(co,...,ck,cry1) can be obtained by marginalizing e
00 f(C(),...,Ck,E) 9T
_ n : Calculate interval for DoB=68%,95%
0= Z Ys On 1.050
= feleos-wven) = [ de folco.. 0 |
: : : 1045
In high energy particle physics, such obs.ervables _ / dé f-(co, . ... c1l) f.(2). |
can be decay rates, event shapes, production cross * oaol
sections, sum rules .... These observables receive O '\
QCD corrections and can be written as a series e Here, we need the explicit dependence on the small 1 0351_ Test whether subsequent order
expansion because of strongly interacting particles parameter £, which we can send to zero later on. Be- T is inside the interval or not.
coupling to the particles involved in the decay or cause of the independence of the likelihood func- 030l |
production process. tions, we can write | k=1 k=2
P 13] folco, ..., cn) = / dé f(co,-- - ,ci|e) f=(€) 3. Repeat this for all observables ‘and at all orders,. de-
RIORS fine success rate (how many higher order contribu-
In Bayesian networks, we encode all information B / . H (6110 1-(8 tions are within).
. . .. . — :|E) f2
which we have betore starting the analysis in priors on i=0 Success rate vs. input DoB. Optimal A value: success rate

the random variables. For the Bayesian network on the

right, we need three priors (if )\ is determined in a fre- close to input Dob (blue, dashed line):

e Plugging in the priors (defined on the left), we ob-

quentist analysis) tain the conditional density function (which pro- L0~ LosNLO

e Likelihood vides us with the information we need to calculate ?
uncertainty bands). 08
f(enlc) = 1] it en| <€ Sending ¢ — 0, the conditional density function is: E 0.6
" 2%¢ 1 0 if |c,|>¢c ' @
S

flerytleo, .-y ck) 304 , \

e Shared information and independence 2 #A=04 =21=05

027 +—A1=0.6 -~ A=0.7
. 68 % |

f{c;,i € 1}|e) = Hf(cz-‘é) ® o5 o +A=08 % 1=09

a= 0'8.0 0.2 0.4 0.6 0.8 1.0
DoB

e Hidden parameter (non-affirmative)
Scan through DoB values (0.05 to 0.95, steps of 0.01), his-

N1 1] if e<c<l/e togram optimal A values (success rate close to input DoB).
fe(c) = _ 1
2|logele | O else
Frequency
0.30
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