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ABSTRACT
The Marine Research Institute of Iceland has over the last 20
years developed and used the program gadget for modeling
of the marine ecosystem around Iceland. The estimation of pa-
rameters in this program requires constrained optimization in
a continuous domain. In this thesis a coevolutionary algorithm
approach is developed to tune the optimization parameters in
gadget. The objective of the coevolutionary algorithm is to
find optimization parameters that both make the optimization
methods in gadget more robust against poorly chosen starting
values and tries to reduce the computation time while maintain-
ing convergence. This is important when bootstrapping is per-
formed on the models in gadget to reduce computation time.
This may also ease the tuning of optimization parameters for
new users and may reveal other local optima in the likelihood,
which may give hint of model misspecification. The algorithm
is tested on functions that have similar characteristics as the log-
likelihood functions in gadget and some results shown for the
case of modeling haddock.

HEURISTICS AND METAHEURISTICS
Heuristics in optimization are methods that find approximate
solutions to optimization problems. The purpose is to provide
good seeding values for exact algorithms and sometime they
are the only viable option when the search space is large, mul-
timodality is present in the objective function or the objective
function is illconditioned. Other problems also come up where
heuristics are used e.g. combinatorial optimization.

Heuristics trade various aspects of exact algorithms for
speed, e.g. optimality and precision. Another thing about
heuristics is that they are often based on a rule of thumb or ex-
amples from nature, which often makes it hard to proof any-
thing for their performance. These methods are sometimes ad
hoc and don’t generalize well to other problems.

Metaheuristics can be summed up in the following defini-
tion by Glover (1986)

A metaheuristic is a high-level problem-
independent algorithmic framework that provides
a set of guidelines or strategies to develop heuristic
optimization algorithms. The term is also used
to refer to a problem specific implementation of a
heuristic optimization algorithm according to the
guidelines expressed in such a framework.

Note that a metaheuristic can refer to a framework, such as evo-
lutionary algorithms and a specific algorithm, such as differential
evolution.

One of the reasons these algorithms have become popular
lately is because they usually scale very well to larger computer
architectures, they are easily parallelizable. The reason for this
is that many of these algorithms are based on agents or individ-
uals that cover the search space. These can be independant or
have some interactions so the computation for each agent can
be calculated on an individual CPU core.

Although metaheuristics may not be directly applicable to
deep learning, it has still potential to be used for feature selec-
tion and other aspects of machine learning.

COMPETITIVE COEVOLUTION
Coevolution is a term from evolutionary biology. It symbolises
the change in a biological object triggered by the change in an-
other biological object. It can happen cooperatively and com-
petitively, and it can happen at the microscopic-level in DNA
as correlated mutations or macroscopic-level where covarying
traits between different species change.

Hillis (1990) is the first person to publish an article on the
usage of competitive coevolution as a metaheuristic. His pa-
per has at the time this thesis is written, over 1100 citations.
He used the competitive nature of the algorithm to create ab-
normal/pathological cases to deal with, which helped tune an-
other algorithm for generating minimal sorting networks so it
would not get stuck at local optima when dealing with such ex-
tremities. This setup has inspired others to do the same, when
either tuning optimization algorithms or training/tuning game-
playing strategies.

When the species are in some sense symmetrical, i.e. repre-
sentations of opposing players in some games, then it can occur
that no strategy dominates all others, i.e. we have non-transitive
players. One of the players can always find a strategy to counter
what the other player is doing. This can create cyclic behaviour,
and has been studied (Samothrakis et al., 2013). Although our
problem is transitive in nature, cycling can still occur (De Jong,
2004) and this further emphasizes the importance of the poste-
rior assessment of the behaviour in the coevolution.

Evolutionary algorithms are special types of heuristics and
metaheuristics. They are what is called generic-population
based metaheuristics. They are formed from the analogy of evo-
lution and the main aspect borrowed is the survival of the fittest.
The methods developed from this framework do not need rich
domain knowledge, but it can be incorporated. Some techni-
cal terms have special synonyms in the theory of evolution-
ary algorithms, which are summarized in the following table.

EA term Regular term
Fitness Objective/Quality
Fitness landscape Objective Function
Fitness Assessment Computation of objective function

value
Population Set of candidate solutions
Individual Candidate solution
Generation Population produced during a specific

iteration
Mutation Alter candidate solution indepen-

dently
Crossover Alter candidate solution with other so-

lutions
Chromosome Solutions parameter vector
Gene Specific parameter in the Chromosome

vector
Allele Specific value of a gene
Phenotype Classification after fitness assessment

The section Algorithms and Examples summarizes how the
algorithm is built using tools from the evolutionary algorithm
framework and describes the problems used to test the algo-
rithm.

ALGORITHM AND EXAMPLES
The species in the Coevolution consist of predators and prey. The
predators are represented by numerical vectors which are pa-
rameters for optimization algorithms and the prey are repre-
sented by numerical vectors which represent starting values for
the optimization. In general the prey can be any parameter vec-
tor which defines a family of function for an optmization algo-
rithm to call.

There is no static objective function, since in each iteration
of the algorithm the score for an individual is dependent on the
individuals in the competing species. Therefore relative fitness
assessment (RFA) is used. The RFA is the mean of the score for a
certain induvidual against some of the individuals in the com-
peting species and the score is a weighted sum of the number
of iterations for each optimization algorithm and the final value
from the optimization. This score/fitness then represents how
well an individual performs relative to the other individuals in
the species.

The fitness is calculated after a generation of new individ-
uals with genetic operators. The best individuals are kept for
the following generations, they must be significantly better
than the individual they were generated from such that they
are chosen. The plot below vaguely describes how the genetic
operators work in a plane for a given individual.

The new potential candidates for the next generation are
generated with the genetic operators from differential evolution
(Storn et al., 1995). It is a combination of mutation and crossover
operators.

It is very tedious to perform the RFA such that all the indi-
viduals interact. Therfore a sampling strategy was developed
to decrease the number of fitness evaluations. In the thesis it is
shown empirically that the
Examples, the examples used were made to portray the algo-
rithm’s capabilities to find hard starting values for the preda-
tors. One of the examples is the following function.

fMultMod(x, y) =
x2 + y2

100
− 10e−(x−3)2−(y−3)2 − 9e−(x+3)2−(y−3)2

− 3e−(x+3)2−(y+3)2 − 8e−(x−3)2−(y+3)2

This function is shown in the following plot with signs changed.

The predator was considered as parameters for simulated an-
nealing and BFGS. This example clearly portrayed the coevolu-
tionary algorithms capabilities to find the hardest starting val-
ues, around the highest minimum. Where multiple optima are
not present it learns to favor the best optimization algorithm for
the job.

This poster only gives a brief overlook of the project. It also
included tests on the gadget program, but there one relative
fitness assessment can take from a few seconds to several min-
utes on small models. The scalability of the algorithm made
parallelizing it easy.

All the code was written in R and gadget is written in C++.
I want to thank the Marine Research Institute of Iceland for
funding me while working on my thesis.

RESULTS
The following plot shows the movement of the prey individuals towards the worst starting positions.
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