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Introduction Project motivation

® The wind power industry Is strongly focused on reducing the cost of ® Can the advanced diagnostic intelligence be fully automatized to provide
wind energy to achieve subsidy independence. An important goal Is accurate, up-to-date, diagnostics of the entire turbine fleet?
to reduce the operation and maintenance costs accumulated during
the lifetime of the turbines.

Data streams

e Advanced remote diagnostic systems supports this effort by reducing SE-e s hoE-o do= 2 o s ah
the risk of severe equipment failure and downtime, lowering the costs o o on Jeaon B fom Jom Jon Jom fom
of spare _parts and optimizing the planning of component exchange mrm triggers analysis by
and repairs. monitoring experts.

® The Siemens Diagnostic Center operates the world's largest _ A hdddhddkg b
advanced wind turbine condition monitoring setup (7500+ turbines -' § .. F =
worldwide). The system relies on a combination of in- and off-turbine oy ¥ j V
alarm triggers and a team of experienced turbine monitoring experts. |

Initial study: Rotor bearing fault detection using a neural network based residual temperature model

® Component temperature increase is a typical sign of progressed ® Methodology: On the basis of a simple thermodynamic model, a two-
damage. Challenge: The component temperatures are highly layer feedforward neural network was trained to predict the bearing
dependent on the operating conditions of the turbine and temperature during no-fault conditions. The residual between this
environmental variables. prediction and the actual temperature Is then used as a failure

Indicator.

e 2 sence o \ 7

;. Z:)al;\zerbrackt e \N measured

4: pitch bearing . tR) (t) \\\‘ ,

5. Rotor hub g " TOW_ j : @( ! 7 T( \§‘\32:‘//

| 15. Yaw ring _ . XN

: ﬁ:::::;ng 16 Yaw gear 9_(13} 9‘(f) 9(? “%‘A‘v%'} w2}

8. Gearbox 1; E:c;:t';bmp'ate 9_(1&1_1) 9(1‘.2—1) g(tfll) x&x‘%i‘;}/ \ T[:rredictecl T AT

9. Brake disc 19, Canopy @(tjf) _ 1 72 "N > %ﬁ}gzzx‘ W - M

10. Coupling 20. Generator fan 'Y}‘}‘)\:e:\ /

Bl | 72 L) =t I N
| 77 B
Active power ',
Generator speed //
Gear box temperature
Nacelle temperature
Ambient temperature
® A network (30 hidden units with tanh activation function and a linear
) j' fﬁ bearing using data from the first 14 months of operation. The
T IO 1 (YT T temperature prediction is based on data from the last 48 hours (K=48
m ® The model predicts the bearing temperature accurately during no-fault
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Turbine stop due to critically _ _
2°h|ghtemperature | ‘ FrOm the temperatu re reSId ual the prOgreSS”']g damage Can be
® Current work: Quantify diagnostic performance of models from
: w simulations on historic data across the entire fleet of turbines.

Deep learning perspectives

® As shown above, shallow architectures show promise for diagnostic systems based on deviations
from a model of the no-fault condition. These models will typically rely on one or more engineered
failure indicators and can be implemented without any prior failure data available.

® |s a purely data-driven approach feasible instead, where the diagnostic features are inferred from
historic failure data, utilizing the full breadth of the data streams to achieve a diagnostic capability
on par with, or superior to, human intelligence?

Example of a vibration frequency-time domain
representation of a component failure mode.

@ Can deep learning architectures achieve this goal?
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